2507.08445v3 [cs.IR] 16 Sep 2025

arXiv

Clue-RAG: Towards Accurate and Cost-Efficient Graph-based
RAG via Multi-Partite Graph and Query-Driven Iterative Retrieval

Yaodong Su
yaodongsu@link.cuhk.edu.cn
The Chinese University of Hong
Kong, Shenzhen

Quanging Xu
xuquanging.xqq@oceanbase.com
OceanBase, Ant Group

Abstract

Despite the remarkable progress of Large Language Models (LLMs),
their performance in question answering (QA) remains limited by
the lack of domain-specific and up-to-date knowledge. Retrieval-
Augmented Generation (RAG) addresses this limitation by incorpo-
rating external information, often from graph-structured data. How-
ever, existing graph-based RAG methods suffer from poor graph
quality due to incomplete extraction and insufficient utilization of
query information during retrieval. To overcome these limitations,
we propose Clue-RAG, a novel approach that introduces (1) a multi-
partite graph index incorporates text Chunk, knowledge unit, and
entity to capture semantic content at multiple levels of granularity,
coupled with a hybrid extraction strategy that reduces LLM token
usage while still producing accurate and disambiguated knowledge
units, and (2) Q-Iter, a query-driven iterative retrieval strategy that
enhances relevance through semantic search and constrained graph
traversal. Experiments on three QA benchmarks show that Clue-
RAG significantly outperforms state-of-the-art baselines, achieving
up to 99.33% higher Accuracy and 113.51% higher F1 score while
reducing indexing costs by 72.58%. Remarkably, Clue-RAG matches
or outperforms baselines even without using an LLM for indexing.
These results demonstrate the effectiveness and cost-efficiency of
Clue-RAG in advancing graph-based RAG systems. The source code
is available in

Keywords
Graph-based RAG, Multi-Partite Graph, Query-Driven Iterative
Retrieval

ACM Reference Format:
Yaodong Su, Yixiang Fang, Yingli Zhou, Quanging Xu, and Chuanhui Yang.
2018. Clue-RAG: Towards Accurate and Cost-Efficient Graph-based RAG

“Yixiang Fang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Conference’17, Washington,DC,USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06

https://doi.org/XXXXXXX.XXXXXXX

Yixiang Fang”
fangyixiang@cuhk.edu.cn
The Chinese University of Hong
Kong, Shenzhen

Yingli Zhou
yinglizhou@link.cuhk.edu.cn
The Chinese University of Hong
Kong, Shenzhen

Chuanhui Yang
rizhao.ych@oceanbase.com
OceanBase, Ant Group

?2)
g@Who was Messi's goal compared to in the Copa del Rey first leg?]

Chunks K6 Built by Existing Methods Generation
/ LM a Copadel '/ Missing Defuils\ (Using the context,)
Barcelona won Rey A goal from Messi answer question

Context: ...Barcelona

won Copa del Rey first
leg

Answer: Insufficient
\information p

reached the > @ lost Lirstlea {f compared to Diego |||
semi-finals of ._’ Bar Copadel | Maradona's goal of

i Re the century €3
the Copa del Rey,| Extraction | celona Bey y
winning the first N — second leg CB/

leg against T Uy
Getafe (with a / Knowledge Unit Node A \ X .
goal from Messi Barcelond's goal from Messi was 7 Using the context. -\
compared to LLM compared to Diego Maradona's goal of answer question:
Diego Maradona the century. Context: ... Messi

‘s goal of the [@ | (Barcelona won the first leg of the Copa [was compared to

Diego Maradona

i but
century), bu Answer: Diego

then lost the
second leg.

Extraction del Rey against Getafe.

Barcelona lost the second leg of the

Maradona
\ Copa del Rey against Getafe / a

Our Method

Figure 1: Comparison of triple extraction in existing Graph-
based RAG methods (Upper) and ours (Below).

via Multi-Partite Graph and Query-Driven Iterative Retrieval. In . ACM,
New York, NY, USA, 14 pages. https://doi.org/XXXXXXX XXXXXXX

1 Introduction

Large Language Models (LLMs) like Qwen3 [41], DeepSeek [7],
and LLaMA3.1 [12] have received tremendous attention from both
industry and academia [11, 18, 20, 24, 37]. Despite their remarkable
success in question-answering (QA) tasks, they may still gener-
ate wrong answers due to a lack of domain-specific and real-time
updated knowledge outside their pre-training corpus [28]. To en-
hance the trustworthiness and interpretability of LLMs, Retrieval-
Augmented Generation (RAG) methods [9, 10, 17, 18, 38, 39, 43, 48]
have emerged as a core approach, which often retrieve relevant
information from documents, relational data, and graph data to fa-
cilitate the QA tasks. The state-of-the-art (SOTA) approaches often
use the graph to model the external data since they capture the rich
semantic information and link relationships between entities.

In the literature, representative graph-based RAG methods typ-
ically follow a two-phase pipeline: (1) Offline index construction:
They first segment the external text corpora 7~ into small chunks,
then extract the nodes and edges, together with their associated tex-
tual attributes (e.g., descriptions [8] or keywords [13]) from chunks
using LLMs, and finally build a knowledge graph (KG) [40, 49].
(2) Online retrieval: Given an online query g, they either retrieve
relevant nodes, edges, or subgraphs from the KG, or optionally
trace these elements back to their source text chunks via associated

https://github.com/Feesuu/ClueRAG
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://arxiv.org/abs/2507.08445v3

Conference’17, July 2017, Washington,DC,USA

provenance links [8, 13, 14]. Afterwards, they incorporate the rele-
vant information from KG or chunks into a prompt template, and
then feed the prompt into an LLM for answer generation. Although
these methods offer improved performance, they still suffer from
two major limitations.

e Limitation 1: the indexes suffer from the incompleteness
issue. As shown in recent studies [40, 49], the constructed KGs often
suffer from incompleteness, typically due to missing key nodes,
edges, or the omission of information that cannot be incorporated
into structured graph elements. Take the text chunk in Figure 1 as
an example. Existing methods typically extract only a few triples
(e.g., (Barcelona, won, Copa del Rey first legagainst Getafe)), while
completely ignoring valuable textual information, such as nuanced
comparisons between Messi’s performance and Maradona’s “Goal
of the Century”. This incompleteness may lead to retrieval errors,
i.e., when a query involving this detail is issued, the KG fails to
provide sufficient information for generating an accurate answer,
as shown in Figure 1.

e Limitation 2: the retrieval methods face the issue of se-
mantic misalignment. In the online retrieval phase, most existing
graph-based RAG methods [8, 13, 14, 19] follow two steps: (1) use
the input query to identify relevant elements (e.g., nodes, edges) in
the KG, and (2) retrieve additional information based on the above
elements, such as text chunks or subgraphs, to augment the con-
text for answer generation. While step (1) ensures query relevance,
step (2) often fails to fully leverage the query information, leading
to a semantic misalignment between the query and the retrieved
context.

To address the above limitations, this paper introduces Clue-
RAG, a novel graph-based RAG approach, which not only builds a
high quality graph, but also well utilize the query information for
answering the questions. For Limitation 1, we introduce a novel
concept, called knowledge unit, which is a statement that conveys an
atomic piece of information from a text chunk. Collectively, these
knowledge units can fully reconstruct the semantic content of the
original text. By extracting entities from the knowledge units, we
can effectively address missing nodes or edges in the constructed
KG. As a result, we build a multi-partite graph composed of three
types of nodes, each representing distinct semantic granularities:
text Chunk, knowledge unit, and entity. These nodes are connected
through extraction and containment relations, forming a coherent
multi-partite graph, as illustrated in Section 3.2 and Figure 3.

Intuitively, we can use some lightweight NLP tools [4] to ex-
tract sentences from a text chunk, and each sentence can serve
as a knowledge unit. However, this approach overlooks sentence
context, leading to contextual ambiguity — semantically similar sen-
tences from different chunks may actually have distinct meanings.
In Figure 2, for example, if we use an NLP tool to extract sentences
from the two chunks, the results may have high cosine similarity
(0.91) despite differing in meaning. To address this, we leverage
LLMs to incorporate context when extracting knowledge units. As
a result, the LLM-extracted units in the same example show much
lower similarity (0.51), effectively capturing context-sensitive dis-
tinctions. However, directly using LLMs to extract the units for all
text chunks is very time and token-consuming.

In this paper, we propose a novel hybrid extraction strategy
that combines the advantages of powerful LLMs and lightweight

Yaodong Su et al.

NLP tools [4]. An ideal strategy would involve an oracle model
that can identify which knowledge unit in a chunk may exhibit
contextual ambiguity with units in other chunks, and then use an
LLM to resolve the ambiguous unit, while relying on NLP tools for
unambiguous units. However, such an oracle model does not exist
in practice. In light of this, we propose to use semantic similarity
between chunks as a proxy to evaluate potential contextual ambigu-
ity, since knowledge units in highly similar chunks are intuitively
more prone to ambiguity. Specifically, we assign chunks having
high semantic similarity with others for LLMs processing, while the
remainder use NLP tools. To balance token cost and extraction accu-
racy, we formulate the chunk assignment as a 0-1 knapsack problem
[31], aiming to maximize the total semantic similarity of the chunks
selected for LLM processing within a given token budget. As shown
in our later experiments, this strategy matches the performance
of end-to-end LLM-based unit extraction, but only uses 50% of the
tokens. Remarkably, Clue-RAG matches or outperforms baselines
even without using an LLM for indexing.

Cosine Similarity

The population of 0.52 The population of
Kemmerer was 2,656 @ Bowdoinham was 2,889
at the 2010 census. g at the 2010 census.

LLmf LM

Kemmerer is the largest Bowdoinham is a town in
city in and the county seat Sagadahoc County, Maine,
of Lincoln County, Wyoming, United States. The
United States. The population was 2,889 at
population was 2,656 at the the 2010 census. It is part
2010 census. As... of the Portland...

NLP Tool & L NLP Tool
The population 091 The population
was 2,656 at the ” was 2,889 at the

2010 census. 2010 census.
Figure 2: Comparing the knowledge units extracted by NLP
tool and LLM.

To address Limitation 2, we propose Query-driven iterative
retrieval (Q-Iter), an iterative retrieval str_ategy that alternately
traverses knowledge units and entities. The process begins by ex-
tracting entities from the query to activate related entities, while
concurrently using semantic search to anchor associated knowledge
units. These units, in turn, expand the entity set by introducing
entities referenced in their content. The strategy then performs con-
strained multihop traversal over the multi-partite graph to retrieve
more relevant units. To ensure alignment with the query, each can-
didate unit is scored using a lightweight re-ranker specialized in
query-context relevance. Finally, the collected knowledge units are
mapped to their originating text chunks, which are subsequently
re-ranked to yield the final context for answer generation.

In our experiments, we test 13 solutions across three datasets, fo-
cusing on two key aspects: (1) Cost efficiency, based on token usage
during offline indexing and online retrieval; and (2) QA perfor-
mance, measured by F1 score and Accuracy. Remarkably, Clue-RAG
demonstrates significant improvements over the SOTA baselines,
delivering up to 99.33% higher Accuracy and 113.51% greater F1
score while simultaneously reducing indexing costs by 72.58%. Be-
sides, the zero-token variant of Clue-RAG achieves comparable

Clue-RAG: Towards Accurate and Cost-Efficient Graph-based RAG via Multi-Partite Graph and Query-Driven lterative Retrieval Conference’17, July 2017, Washington,DC,USA

or superior performance to baselines. This highlights Clue-RAG’s
superior graph indexing and inherent retrieval capabilities.
In summary, we make the following principal contributions:

e We propose a novel multi-partite graph index that integrates
text chunks, knowledge units, and entities to enable seman-
tically coherent cross-granularity retrieval, coupled with a
hybrid extraction strategy for knowledge units that strategi-
cally balances the benefits of LLM processing against token
usage.

e We propose Q-Iter, an iterative retrieval strategy that in-
crementally expands relevant knowledge units through se-
mantic search and constrained graph traversal, significantly
improving RAG performance.

e We conduct extensive experiments and demonstrate the su-
perior performance of Clue-RAG over baselines.

Outline. We provide the preliminaries and problem formulation
in Section 2. Section 3.1 presents an overview of Clue-RAG, Section
3.2 details the construction of the offline index Clue-Index, and
Section 3.3 describes the online retrieval algorithm Q-Iter. The
experimental results are then reported in Section 4. We review
related work in Section 5 and conclude the paper in Section 6.

2 Preliminary

Let 7 be a text corpora whose element ¢; € 7 is a text chunk whose
token length is at most L. The embedding of each text chunk ¢;
is denoted by ¢(t;). We denote a graph by G = (V, E), where V
represents the set of nodes, and & € V x V denotes the set of
edges connecting pairs of nodes. In addition, we use calligraphic
uppercase letters (e.g., S) to represent a set of elements. Table 1
provides a summary of frequently used notations.

Table 1: Notations and meanings.

Category Notation Meaning
R(-,) The re-ranking function
Text @(t;) The embedding of text ¢;
Processing a(S) Concatenation of texts in set S
T,ti, L Text t; € 7 whose lengthis < L
M Beam size M
D Search depth D
Retrieval N Returned chunks size N
K Top-K relevant results K
a Token constraint coefficient &
Edges set &; € Vi x Vi
G=(V,8) Edges set &, C V, X Vi
Index E=8.U&E, Entity nodes set Ve

V =YVrU Vg UV, Chunk nodes set Vi

Knowledge unit nodes set Vi

PrROBLEM 1 (GRAPH-BASED RAG). Given an LLM, a text corpora
T, and a set of questions Q, find the relevant information for Q from
the KG built on T, which can be used to augment Q so that the LLM
can generate high-quality answers for Q.

3 Our Proposed Approach: Clue-RAG

In this section, we develop a novel graph-based RAG, called Clue-
RAG, which addresses the two major limitations in existing methods

by manipulating text Chunk, knowledge unit, and entity. Specifically,
we design a multi-partite graph index that supports semantically
coherent retrieval across multiple levels of granularity, coupled
with a hybrid strategy for knowledge unit extraction that balances
LLM utility with computational cost. Besides, we propose Q-Iter,
an iterative retrieval strategy that improves retrieval accuracy. We
first provide an overview of Clue-RAG in Section 3.1 and then
describe its two core modules in Sections 3.2 and 3.3.

3.1 Overview

At a high level, Clue-RAG consists of two modules: offline indexing
Clue-Index and online retrieval Q-Iter. As shown in Figure 3, the
offline Clue-Index has two stages:

e Stage-1: hybrid extraction. Given a text corpora 7~ and a token
constraint coefficient a € [0, 1], a subset of core text chunks
TJ. € T is selected based on relevance metrics. For each t € 7, an
LLM is employed to extract disambiguated knowledge units. For
t € 7'\ 7¢, we use an NLP tool to segment the text into sentence-
level units. Finally, entities are extracted from knowledge units
using an NLP tool.

e Stage-2: graph construction. We construct a multi-partite
graph index G = (V, &), including three types of nodes: chunk,
knowledge unit, and entity. In G, edges only connect nodes of
different types: specifically, chunk nodes are linked to their cor-
responding knowledge unit nodes, and knowledge unit nodes
are further connected to the entities they reference.

During the online retrieval, Q-Iter begins by extracting entities
from the input query q to activate related entities, while semantic
search anchors initial knowledge units. These units expand the
entity set via referenced entities, enabling constrained multihop
traversal over G to retrieve additional relevant units. The resulting
units are mapped to their source chunks and re-ranked to form the
final context for answer generation.

Algorithm 1: Clue-Index (7, a)

1 Input: Text corpora 7 = {#1,..., t, }, constraint & € [0,1]
2 Output: A multi-partite graph index G = (V, &)

3 J¢ « Chunk-Selection (7, @) in Algorithm 2;

4 ﬂ/¢<—{ti|tie’f}, Vi — 0, Ve —0;

5 Ec — 0, Ee « 0;

¢ foreach t; € Vi do

7 if t; € 7. then

8 L K; < extracted by LLM from ¢;
9 else
10 L Ki < split by NLP tool from ¢;;

| Vi — Ve UK;; Ec «— U {(ti,k) | k € K;};

12 foreach k € Vi do
13 Vi «— NER(k); Ve — Vo U Vi;
u | Ee — Ee U {(v,k) | veE W}

15 return G = (VU Vg UV, E. U Ee);

3.2 Offline index: Clue-Index

We illustrate the two key stages of indexing as follows.
Stage-1: hybrid extraction. As shown in Algorithm 1, the hybrid
extraction process begins by selecting a subset of core text chunks

Conference’17, July 2017, Washington,DC,USA

Yaodong Su et al.

Stage-1: Hybrid Extraction i ‘:f Stage-2: Graph Construction
=X i Text Chunk
D =) . i Layer
So O— Y
Core Chunks LLM } 1
- Similarity 1 TEXT] Q i: Knowled
== Metric RE Howiecde
0 = = & => [I:?L’ll ?, Unit Layer
Text 0-1 Other Chunks NLP Tool KUs 11
¢ ex Chunks Knapsack . &
orpora Token 1 B e = P -IIP Entity
) . Length o i Layer
Offline Indexing: Clue-Index iU deedy By f -
Step-1: Entity Anchoring Step-2: Iterative Retrieval Step-3: Final Re-ranking Generation
? r@ ! @ Anchoring (@) Searching @ Reranking | End at :r Mapping Re-rank
[A & e
ISR i Depth | i i Based on the i
SO 1 : H H
Extracted, ﬁ“ i #A V ﬂ #A W ﬂ : # i # @ # context, the
_) ac _>DDDD‘L iz 1 [® 4 iansweris.. § i
Entities embed l} SR é Y Xi ! ? ' P
LLM S @ © 6 o o & { ¢} -]
. . . Entity to Knowledge Unit Knowledge Knowledge .
Online Retrieval: Q-Iter Knowledge Unit to Text Chunk Unit to Entity Q Chunk node A\ Unit node O Entity node

Figure 3: Clue-RAG consists of two phases: offline indexing and online retrieval.

Algorithm 2: Chunk-Selection (7, a)

-

Input: Text corpora 7 = {#1, ..
Output: a core subset of text chunks 7. € 7
Wiotal < 0, S « 0;
foreach #; € 7 do
w; < TokenLength(¢;);
6 v; « BLEU(#;, T\ {t:}); > Standard BLEU calculation
7 Wiotal ¢ Wiotal + Wi; S «— S U {(w;,97) };
8 Whax «— [Wioral 1;
9 ¢ « Knapsack(S, Whax);
10 return 7;;

., tn}, constraint & € [0, 1]

)

@

LIS

7: € 7 using Algorithm 2, based on a token constraint coefficient
a € [0,1]. In Algorithm 2, we formulate the selection stage as a 0-1
knapsack problem, where each chunk’s relevance score determines
its assigned value (line 5) and its token length corresponds to its
weight (line 6), with the goal of selecting subsets to maximize total
relevance under the token budget (line 9) — a classic optimization
paradigm identical to 0-1 knapsack problem [31].

In Algorithm 1, once 7; is identified (line 3), each text chunk ¢ is
processed according to its selection status (lines 6-11). For t; € 7,
an LLM extracts disambiguated knowledge units %; that capture
core semantics. For t; € 7\ 7, a lightweight NLP tool [4] is used
to segment the text into sentences as knowledge units %K to ensure
broad coverage at lower computational cost. All text chunks and
extracted knowledge units are instantiated as text nodes Vy and
knowledge unit nodes Vy, respectively, forming the upper and
intermediate layers of the multi-partite graph. Finally, the Named
Entity Recognition (NER) component in spaCy [16] is utilized to
extract entities Vj for each knowledge unit k (lines 12-13). All these
extracted entities Vj are collected and form entity nodes V,, acting
as anchors for precise information retrieval.

Stage-2: graph construction. As shown in Figure 3, Clue-Index
is a multi-partite graph G built from a text corpora 7, organiz-
ing information across three semantic levels. In the upper layer,
chunk nodes V7 represent coarse-grained content by encoding
text chunks. The intermediate layer contains knowledge unit nodes
Vg, which capture semantically richer information distilled from
the text. In the lower layer, entity nodes V. encode fine-grained
factual elements extracted from knowledge units. The graph is then
connected by two types of edges: &, linking each chunk node to
its corresponding knowledge units, and &,, connecting knowledge
units to the entities they mention. We present the construction
algorithm in Algorithm 1.

3.3 Online retrieval algorithm: Q-Iter

Given a query g and a multi-partite graph index G, our retrieval
algorithm Q-Iter, outlined in Algorithm 3, identifies relevant in-
formation of ¢ from the corpora. It has four input parameters, i.e.,
the number of most relevant results K, maximum search depth D,
beam size M per depth level, and returned chunks size N. Q-Iter
proceeds through three carefully designed steps as follows:
Step-1: entity anchoring. The goal is to identify query-relevant
seed nodes (Vq(o). Inspired by cognitive theories of spreading acti-
vation [1, 6], we first extract entities from the input query using
an LLM and identify their top-K most similar entity nodes in G to
form the initial query set (Vq(o). In parallel, we retrieve the top-K
knowledge units that are most semantically similar to the query
and expand (Vq(o) by including all entities referenced in these units.
This dual expansion incorporates both directly matched entities
and entities introduced via semantically aligned knowledge units,
enhancing the coverage and specificity of subsequent multihop
retrieval. We refer to this combined process of Spreading Activa-
tion and Knowledge Anchoring as Entity Anchoring shown in
Algorithm 4, which yields the initial seed nodes (Vq(O)A

Step-2: iterative retrieval. The key idea is to progressively gather
highly query-relevant and non-redundant knowledge units at each

Clue-RAG: Towards Accurate and Cost-Efficient Graph-based RAG via Multi-Partite Graph and Query-Driven lterative Retrieval Conference’17, July 2017, Washington,DC,USA

Multi-Partite Step-1:
Graph Index Entity Anchoring

When did the

Step-2: Iterative Retrieval
L

Iter=2
1 : @ Anchoringi

Searching

2) Searching
A

5 1*) Reranking i i @R Ki
1979-80 / 1 1(3 Reranking
Europea | AbLA) A
Lm ncpy L X v X | v

Ifer-:é Re-ranking

Generation .-
{ © 1979-80 European Cup @ Nottingham Forest @ FACup @ Forest

A\ The winning goal in 1979-80 European Cup final was scored by John Robertson.g
A\ The European Cup was won by Nottingham Forest in the 1979-80 season. ;
A\ Chelsea F.C. won the FA Cup in 1970.

1989 and A\ Forest is a football club, also called Nottingham Forest.

1959,

A\ Forest won the FA Cup in 1898 and 1959.

Figure 4: A toy example illustrating the online retrieval.

Algorithm 3: Q-Iter(q, G,K,D,M,N)

1 Input: q, G = (Ve U Vg UV, EU Ee), K, D, M, N
2 Output: top-N relevant text chunks 7

3 (Vq(o) «— Entity Anchoring(q,K, G) in Algorithm 4;
4 # Iterative Retrieval

QO — {(v.9(9).0) |ve V"}:C* —0;
foreachd =1,...,D do

o

=N

7 C « 0;

8 foreach (v, ¢, S,) € Q4™ do

9 Ko — arg max cos(¢(k), ¢o);

KeVie\SoA(0.k) €Ee Ko |=K

10 foreach k € K, do

1 9, — ¢ — ¢(k); > Update query embedding

12 S, sort(Sy U {k}); > Dictionary sorting

13 score «— R(q, ®(S,)); > Re-rank

1 V' —{v] (vk) € E};

15 C—CU{(V, ¢S, score)};

16 C' arg max score; > Pruning
(V,9,S,score)eCA|IC’ |=M

17 C*«C'ucC;

B QY U(ﬂ/,qp,S,score)eC’ {(0,,8) |veV}

19 # Final Re-ranking
20 77« 0;
21 foreach (V, ¢, S,score) € C* do
22 L T — T U{t|keSA(tk)e&E};
23 77« argmax R(q.t);
teT’ AT*|=N
24 return 77,

[ae

depth. Given the seed nodes (Vq(o), Algorithm 3 first initializes QO

with tuples (v, ¢(g), 0) for each anchor v € (Vq(o) (line 5), where
¢(q) is the original query embedding that guides the semantic
search and 0 will accumulate the retrieved knowledge units. For
each depth d from 1 to D, it processes the query queue Q(¢~1
(lines 6-18). For each (v, ¢y, S,) € QU4~Y, it retrieves top-K new
knowledge units K, € Vi \ S, using ¢,, ensuring relevance while
avoiding redundancy (lines 8-9). For each k € K,, it first updates
the query embedding by subtracting k’s embedding (lines 10-15),
dynamically shifting focus to uncovered information and avoid-
ing redundancy (This mechanism is termed Query Updating, as
demonstrated in Experiment 4.4.). Next, the algorithm adds k to
S,, sorts it canonically, then uses re-ranker R to score ®(S;) for
coherence with g. Unlike semantic similarity measures, R special-
izes in query-context relevance scoring, allowing a more accurate
assessment of knowledge units’ relevance to g. Then, the algorithm:
(1) finds adjacent entities V"’ via k’s edges as next-depth anchors,

and (2) updates C with the new state tuple and its re-ranked score.
Finally, the algorithm prunes C to the top-M tuples C’ based on
their re-ranked scores, merges them into C*, and initializes Q (@
for the next iteration (lines 16-18), where the re-ranker R guaran-
tees C* contain maximal evidential support for answering g while
maintaining computational efficiency.

Step-3: final re-ranking. The key idea is to retrieve the most
query-relevant text chunks from C* via re-ranking for augmented
generation. The algorithm first retrieves text nodes 7 citing S via
&, and then selects top-N by their re-ranked scores to form final
chunks 7" for augmented generation (lines 19-23).

Example 3.1. Given a query ¢ = “When did the 1979-80 European
Cup winner win the FA Cup?”, then Q-Iter executes the three steps:
Step-1 (entity anchoring): The LLM first extracts entities (Vq(o) =
{1979-80 European Cup, FA Cup} from q. Simultaneously, it retrieves
the most semantically similar knowledge unit “The European Cup
was won by Nottingham Forest in the 1979-80 season” using the
query embedding, expanding (Vq(o) to {1979-80 European Cup, FA
Cup, Nottingham Forest}.

Step-2 (iterative retrieval): In the first iteration, the anchoring
stage initializes with the seed nodes from Step 1. For each entity
in (Vq(o), the algorithm retrieves the top-K (K = 1) semantically
similar knowledge unit linked to it via the query embedding. For
instance, FA Cup retrieves Chelsea F.C. won the FA Cup in 1970. After
each iteration, Step 2 applies re-ranker R to score knowledge units
against g. In this toy example, only the top-M (M = 1) relevant
units are retained per iteration. The process terminates at maxi-
mum depth D = 3. The complete retrieval path originates from
Nottingham Forest to Forest won the FA Cup in 1898 and 1959.
Step-3 (final re-ranking): The algorithm maps the retrieved knowl-
edge units back to their source text chunks, then re-ranks them
based on g, and finally uses the most relevant chunks for RAG.

4 Experiments

In this section, we assess the effectiveness of Clue-RAG by address-

ing the following research questions:

e Q1: How does Clue-RAG compare to existing baselines in terms
of QA performance and cost efficiency?

e Q2: How does our hybrid extraction strategy compare to alterna-
tives and full LLM-based extraction?

e Q3: What are the contributions of each step of Q-Iter?

e Q4: How sensitive is Clue-RAG to hyperparameter settings?

4.1 Experimental Setup

Datasets. We evaluate Clue-RAG on three multihop QA bench-
marks: MuSiQue [35], HotpotQA [42], and 2WikiMultiHopQA (2Wiki

Conference’17, July 2017, Washington,DC,USA

Algorithm 4: Entity Anchoring(q, G,K)
Input: ¢, K, G = (V5 U Ve UV, E. U Ee)
Output: initial seed nodes ‘V(}O)

-

)

w

Spreading Activation
4 V4 < NER(q); (Vq(o) — 0;
foreach v € V,; do
Ny « argmax cos(¢(v), ¢(0v));
o' €VeN[Ny|=K

o

V3" = Ve U Nos:

o

Knowledge Anchoring

9 Kq — argmax cos(¢(k), ¢(q));
keVhlKy|=K

10 Ve — Ve UlUgese, (0] (0.k) € 8

11 return qu(O)

Below) [15]. Following prior work [14, 29, 34, 45], we use 1,000
validation questions per dataset, with corresponding paragraphs
preprocessed into 7. See Appendix Table 5 for statistics.
Metrics. We evaluate each solution’s performance in terms of QA
performance and cost efficiency. For QA performance, we report
Accuracy (Acc. below) and F1 score (F1 below), where the former
one measures whether the golden answers are included in the
generation answer rather than requiring exact match [2, 22], and
the latter one is computed via token-level overlap between golden
and generated answers, balancing precision and recall to assess both
answer completeness and correctness [14, 45]. For cost efficiency,
we quantify two metrics: total token expenditure for offline indexing
and average token consumption per online query q.

Baselines. We test the following 13 solutions in 4 categories.

e Simple baselines: We consider 2 straightforward approaches:
(1) the Zero-shot method, which directly applies an LLM for
QA without any retrieval, and (2) VanillaRAG, which retrieves
relevant passages through query embedding similarity before
using these passages as context for generation.

e Graph-based baselines: We evaluate 6 graph-based baselines
that construct text-attribute KG using LLMs for content retrieval:
HippoRAG [14], KETRAG [19], and local search of GraphRAG
(LGraphRAG) [8], and 3 versions of LightRAG (LLightRAG for
local search, GLightRAG for global search, and HLightRAG for
hybrid search) [13], excluding GraphRAG’s global version as it
targets abstract QA rather than multi-hop QA.

e Tree-based baselines: We evaluate 2 tree-based baselines: RAP-
TOR [32] and SIRERAG [45], both constructing multi-level trees
for passage organization and retrieval.

e Our proposed solutions: Our approach supports three opera-
tional modes, determined by a hyperparameter « € [0, 1], which
controls the proportion of tokens in 7~ processed by LLMs during
offline indexing. Clue-RAG-0.0 (@ = 0.0) demonstrates the strong
performance of our LLM-free graph index and retrieval strategy.
Clue-RAG-0.5 (o = 0.5) highlights the effectiveness of our hybrid
extraction strategy, achieving strong performance while reduc-
ing 50% indexing cost. Clue-RAG-1.0 (@ = 1.0) represents the
full-capacity configuration, where all text chunks are processed
by LLMs, enabling the system to achieve SOTA performance.

Settings. All experiments are conducted on a Linux machine with
an Intel Xeon 2.0 GHz CPU, 1024 GB of memory, and 8 NVIDIA

Yaodong Su et al.

GeForce RTX A5000 GPUs (each with 24 GB of memory), capa-
ble of running both LLaMA3.0-8B [12] and Qwen2.5-32B [3] LLM
models. To ensure a fair comparison, all methods are implemented
under a unified framework [49] using their default configurations.
Additional experimental details are provided in Appendix A.1.

4.2 Overall performance evaluation (Q1)

In the first set of experiments, we compare Clue-RAG against ten ex-
isting solutions in terms of QA performance and cost efficiency. As
shown in Table 2, Clue-RAG consistently achieves superior QA per-
formance across multiple benchmark datasets when evaluated with
different LLMs, with Clue-RAG-1.0 establishing SOTA performance
in both average F1 and Acc. Specifically, it outperforms the strong
baseline KETRAG by 21.53% in average F1, while also surpassing
another competitive baseline SIRERAG by 5.75% in average Acc.
Besides, Clue-RAG-0.5 demonstrates competitive QA performance
relative to KETRAG, and achieves improvements of 19.29%/27.19%
in average F1/Acc. Notably, Clue-RAG-0.0, which entirely avoids
LLM usage in indexing, still matches or exceeds the capabilities of
two strong baselines, achieving a 13.01%/52.50% average F1 improve-
ment over KETRAG and SIRERAG, respectively. Beyond outper-
forming these two competitive baselines, Clue-RAG demonstrates
superior QA performance across all evaluated datasets compared to
the other eight alternatives. This consistent advantage highlights
the effectiveness of its innovative indexing and retrieval strategies
in multi-hop QA scenery.

Meanwhile, compared to KETRAG, Clue-RAG-0.5 reduces token
costs by up to 9.41%/83.87% during offline indexing and online
retrieval, as shown in Figure 5 and 6. Remarkably, during offline
indexing, Clue-RAG-0.0 reduces token costs by 100% compared to
KETRAG and SIRERAG. During online retrieval, it reduces up to
82.92%/56.06% token costs compared to these two strong baselines.
Hence, Clue-RAG is token-cost efficient.

B GraphRAG O LightRAG [HippoRAG [KETRAG
B SIRERAG B Clue-RAG-0.0 M Clue-RAG-0.5 B Clue-RAG-1.0

@ RAPTOR

Tokens (log scale)
=

10°
MuSiQue HotpotQA 2Wiki

Figure 5: Token cost in offline indexing using LLaMA3.0-8B
(Clue-RAG-0.0 requires no LLM).

4.3 Effectiveness of hybrid extraction (Q2)

In this experiment, we evaluate the effectiveness of our hybrid ex-
traction strategy for knowledge units, as described in Section 3.2.
Table 3 reports the QA performance of four methods, each con-
strained to use only 50% of the total token budget for LLM process-
ing (@ = 0.5). The methods differ in their chunk selection strategies:
RANDOM (random selection), COS (our Chunk-Selection using
cosine similarity), and BLEU (our Chunk-Selection using BLEU
score). For direct comparison, we also include the performance of
Clue-RAG-1.0 (BLEU), which uses 100% of the token budget. The
results show that both COS and BLEU significantly outperform

Clue-RAG: Towards Accurate and Cost-Efficient Graph-based RAG via Multi-Partite Graph and Query-Driven lterative Retrieval Conference’17, July 2017, Washington,DC,USA

Table 2: Overall performance of RAG solutions. The best and second-best results among the ten competitor solutions (excluding
the Clue-RAG series) in each column are highlighted in bold and underlined, respectively.

LLaMA3.0-8B Qwen2.5-32B
MuSiQue HotpotQA 2Wiki MuSiQue HotpotQA 2Wiki Avg
Method F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc.
Simple Baselines
Zero-shot 7.14 5.11 2434 2530 18.88 33.78 9.62 5.71 25.51 2590 26.44 27.10 18.66 20.48
Vanilla 12.28 14.21 40.62 52.50 18.22 34.00 20.97 21.02 53.55 60.50 30.94 44.80 29.43 37.84
Graph-Structured Baselines
LGraphRAG 9.23 14.21 24.81 43.90 15.11 42.20 13.12 19.12 34.04 53.20 21.57 46.20 19.65 36.47
LLightRAG 7.94 6.91 2543 3630 17.35 33.60 13.82 1852 34.09 49.10 2253 48.40 20.19 32.14
GLightRAG 5.34 5.14 17.80 27.40 11.82 23.20 9.31 11.51 21.69 34.30 8.09 35.70 12.34 22.88
HLightRAG 7.87 9.41 25.82 3740 13.16 28.40 14.57 22.62 3589 55.60 19.16 5230 19.41 34.29
HippoRAG 11.58 11.81 39.63 4440 2494 48.20 15.00 20.42 40.36 52.20 26.95 53.70 26.41 38.46
KETRAG 16.25 1251 4875 4710 2790 4140 21.08 1652 6194 5770 50.02 49.90 37.66 37.52
Tree-Structured Baselines
RAPTOR 10.58 16.22 3418 56.50 16.92 4330 1731 21.12 47.09 63.70 28.88 47.20 25.83 41.34
SIRERAG 1199 2122 34.02 5570 1834 43.90 2246 3193 4675 6510 33.88 57.10 2791 45.83
Clue-RAG-0.0 24.10 21.02 53.18 57.20 32.19 46.60 34.26 3133 62.14 63.50 49.47 5470 4256 45.73
Clue-RAG-0.5 25.60 22.12 55.80 59.50 35.52 4890 36.68 32.93 6344 64.10 52.49 58.80 44.92 47.73
Clue-RAG-1.0 2548 22.32 55.97 59.20 37.41 50.70 36.50 32.83 64.02 6470 5520 61.00 45.76 48.46
537045510

Table 3: Performance comparison of Clue-RAG-0.5 using different core chunk selection strategies. The table highlights the best
and second-best results in each column with bold and underlined formatting, respectively.

LLaMA3.0-8B Qwen2.5-32B
MuSiQue HotpotQA 2Wiki MuSiQue HotpotQA 2Wiki Avg
Method F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc
Clue-RAG-0.5 (RANDOM) 25.18 21.32 54.44 57.60 3400 4690 36.61 33.93 61.59 63.40 49.49 5470 4355 4631
Clue-RAG-0.5 (COS) 24.64 2142 5580 59.10 35.18 49.10 36.19 3213 63.65 64.90 52.83 59.10 44.72 47.63
Clue-RAG-0.5 (BLEU) 25.60 22.12 55.80 59.50 35.52 4890 36.68 3293 63.44 6410 5249 58.80 44.92 47.73
Clue-RAG-1.0 (BLEU) 25.48 2232 5597 59.20 37.41 50.70 36.50 32.83 64.02 64.70 55.20 61.00 4576 48.46
M Zero-shot B VanillaRAG BN LGraphRAG 5 LLightRAG £ GLightRAG

RANDOM on average F1 and Acc. Particularly, the BLEU-based
strategy achieves the highest performance, exceeding RANDOM
and COS by 3.14% and 0.46% in average F1, and by 3.05% and 0.21% in
average Acc, respectively. These gains underscore the effectiveness
of our hybrid extraction approach in the offline indexing stage.

While Clue-RAG-1.0 (BLEU) yields stronger results, Clue-RAG-
0.5 (BLEU) achieves 94.95%—-100.51% of its performance, with half
of the token usage. An interesting phenomenon emerges on the
MuSiQue dataset with LLaMA3.0-8B and Qwen2.5-32B, where Clue-
RAG-0.5 (BLEU) occasionally outperforms its full-token counterpart.
This suggests that certain questions in MuSiQue exhibit a stronger
lexical alignment with original sentences than with LLM-extracted
knowledge units, as the paraphrasing process may substitute crit-
ical terms with less relevant alternatives. Overall, these results
demonstrate that hybrid extraction strategy can maintain robust
QA performance while significantly reducing the token cost.

4.4 Ablation study (Q3)

In this experiment, we evaluate the key components of Q-Iter,
i.e., Spreading Activation (S-A below) and Knowledge Anchoring

[HLightRAG [HippoRAG [KETRAG
B Clue-RAG-0.0 m Clue-RAG-0.5 B Clue-RAG-1.0

@ RAPTOR M SIRERAG

%

Tokens (log scale)
2

10!
2Wiki

MuSiQue

HotpotQA

Figure 6: Token cost in online retrieval using LLaMA3.0-8B.

(K-A below) of Step-1, and the Query Updating (Q-U below) of Step-
2. Table 4 shows the performance of removing each component.
We observe that S-A enhances the average F1 and Acc. by 9.5%
and 9.95%, respectively, while K-A provides improvement of 5.34%
and 4.83%, and Q-U improves the average F1 and Acc. by 1.63%
and 1.32%. The superior performance of S-A can be attributed to
its alignment in semantic granularity: The entities extracted from
the query by the LLM are matched against entity nodes in the
multi-partite graph, ensuring consistency. In contrast, K-A relies

xxxx
自由文本

xxxx
自由文本
59.10

xxxx
自由文本

xxxx
自由文本
53.04

xxxx
自由文本

Conference’17, July 2017, Washington,DC,USA

Yaodong Su et al.

Table 4: Ablation study of Clue-RAG-1.0, evaluating the contributions of three key components (K-A, S-A, and Q-U). The best
performance for each metric is highlighted in bold, while the second-best result is underlined.

LLaMA3.0-8B Qwen2.5-32B
MuSiQue HotpotQA 2Wiki MuSiQue HotpotQA 2Wiki Avg
Method F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc F1 Acc.
Clue-RAG-1.0 25.48 2232 5597 59.20 3741 50.70 36.50 32.83 64.02 64.70 5520 61.00 45.76 48.46
w/o K-A 2526 22.02 5293 5550 36.75 50.10 32.64 29.13 60.50 62.00 5258 58.60 43.44 46.23
w/o S-A 23.18 19.52 5348 55.70 3476 45.60 31.64 28.03 59.12 59.90 48.57 5570 41.79 44.08
w/o Q-U 2451 20.72 5451 56.80 38.00 51.50 3536 32.03 62.52 64.10 55.27 61.80 45.03 47.83
w/o Q-U or K-A 22.53 18.82 52.00 5390 36.52 4950 3193 2833 60.14 62.00 52.72 5890 42.64 4524
w/o Q-U or S-A 2157 1742 51.22 5350 3343 46.10 31.84 2793 56.71 58.30 4834 5580 40.52 43.18
on semantic embeddings of the query to align with knowledge unit MuSiQue
nodes in the graph, which may introduce noise due to potential 37 37 40 T 38
inconsistencies in semantic granularity. Q-U improves F1 by up ” 4 30 oy
to 3.96% and Acc by 7.72% on MuSiQue, and by 2.68% and 4.23% — T L -
on HOtpOtQA, but Shghﬂy degrades on 2Wiki. The performance 31 3 5 7 9 313 5 7 9 20 1 2 3 4 3 0 0.250.50.75 1

decline on 2Wiki stems from its frequent semantically similar enti-
ties (e.g., family relations or homonyms like Elizabeth I/II), which
challenge disambiguation. Nevertheless, they collectively enhance
the retrieval performance of Clue-RAG.

4.5 Parameter sensitivity (Q4)

In this experiment, we analyze the sensitivity of Clue-RAG using
Qwen2.5-32B w.r.t. key hyperparameters: the number K of top-K
retrieved results, beam size M, search depth D, and token constraint
coefficient a, where K € {3,5,7,9}, M € {3,5,7,9}, D € {1,2,3,4},
and « € {0,0.25,0.5,0.75, 1.0}.

First, as shown in Figure 7 (a), Clue-RAG does not exhibit a
consistent improvement in generation quality with increasing K
across all three datasets. Instead, the results suggest that K = 3
provides sufficient retrieval results, while larger values introduce
noise without meaningful gains. Next, Figure 7 (b) reveals that
generation quality generally improves with larger beam sizes M.
However, the gains plateau beyond M = 5, and a slight decline
occurs at M = 7,9. This indicates that M = 5 strikes an optimal bal-
ance between generation quality and computational efficiency, as
excessively large beam sizes may introduce noise with diminishing
returns. Furthermore, Figure 7 (c) demonstrates that deeper search
depth D leads to better performance, which aligns with the nature
of the datasets, where most questions require 2 hops while fewer
necessitate 3-4 hops. Nevertheless, when D = 4, generation quality
slightly deteriorates, likely due to over-retrieval of irrelevant in-
formation for most 2-hops questions. Finally, Figure 7 (d) shows a
positive correlation between the token constraint coefficient o and
generation quality. This is expected because higher a values allow
the LLM to process more chunks, thereby improving the quality
of knowledge units and enhancing retrieval accuracy. Consistent
results are observed across other datasets in Appendix Figure 8.

5 Related Works

In this section, we review the representative RAG methods based on
vector database (VDB) [26, 47], trees, and graphs. For more details,
please see recent surveys [9, 28, 46] and empirical study [49].

(a) Top-K (b) M

—0— F1 —— Acc.

(¢c)D d) a

Figure 7: Performance analysis under different hyperparam-
eter settings on MuSiQue dataset.

e VDB-based RAG. Vallina RAG is a basic RAG solution that (1)
splits the corpora into text chunks, (2) encodes them into embed-
dings via an embedding model, and (3) stores embeddings in a VDB.
During online retrieval, the same model embeds the query and then
retrieves top-K relevant text chunks for augmented generation.

e Tree-based RAG. RAPTOR [32] introduces a tree-based in-
dex, which can be built in a bottom-up tree manner. Specifically,
it begins with raw text chunks as leaf nodes, clusters their embed-
dings via Gaussian Mixture Models [23], then recursively summa-
rizes clusters using LLMs and re-clusters them to build the tree
bottom-up. During online retrieval, all tree nodes are indexed in
a VDB, enabling a fast semantic similarity search with query em-
beddings. Building on RAPTOR, SIRERAG [45] introduces a dual
tree framework, which first extracts propositions and entities from
texts using LLMs, regrouping propositions linked to the same en-
tity into new passages, and then organize these passages into a
relatedness tree alongside the RAPTOR similarity tree, with both
trees jointly indexed in the same vector database for retrieval. This
hybrid approach aims to balance semantic similarity and related-
ness coherence. EraRAG [44] is a novel hierarchical tree-based RAG
method that focuses on the dynamic scenario, allowing for efficient
and incremental index updates as the corpus evolves.

e Graph-based RAG. Compared to trees, graphs are more effec-
tive for modeling complicated relationships. Microsoft’s GraphRAG
[8] first constructs a text-attributed KG by extracting entities, re-
lationships, and other detailed contextual features from text frag-
ments through LLMs. Then, it employs Leiden algorithm [33] to
cluster the KG into some hierarchical clusters, where each clus-
ter is associated with a community report. For retrieval, it uses
the local search to retrieve relevant context from entities, relation-
ships, community reports, and text chunks to augment response.

Clue-RAG: Towards Accurate and Cost-Efficient Graph-based RAG via Multi-Partite Graph and Query-Driven lterative Retrieval Conference’17, July 2017, Washington,DC,USA

ArchRAG [36] organizes attributed communities hierarchically, and
augments the question using summaries of attributed communities.
LightRAG [13] constructs a KG from text chunks while using LLMs
to augment both entities and relations with extracted keywords and
leverages LLMs to extract query-relevant low-/high-level keywords
for retrieval. KETRAG [19] first selects core text chunks from a KNN
graph built using both semantic and lexical similarity, and then
constructs a KG. It supports online retrieval by using the standard
local search but extracting ego networks to improve LLM genera-
tion. HippoRAG [14] constructs a KG by extracting triplets from
the text chunks using LLMs and enhances its quality by linking
similar entities via semantic embeddings. For multi-hop reasoning,
it employs PPR to retrieve relevant KG entities and augments the
response with entities’ associated text chunks for LLM generation.

6 Conclusion

In this work, we propose Clue-RAG, a graph-based RAG approach
that features a multi-partite graph index integrating chunks, knowl-
edge units, and entities. To efficiently build this index, we introduce
a hybrid extraction strategy for knowledge unit that maximizes
LLM processing benefits while minimizing token usage. For online
retrieval, we design a query-driven iterative retrieval (Q-Iter) that
ensures relevant retrieval results. These designs enhance graph
quality and retrieval relevance while reducing LLM token consump-
tion. Experimental results on three QA benchmarks demonstrate
that Clue-RAG significantly outperforms SOTA baselines in both
QA performance and cost efficiency. Notably, its zero-token vari-
ant achieves comparable or superior performance, highlighting the
robustness and effectiveness of our approach. In the future, we will
extend our Clue-RAG for processing multimodal data.

Conference’17, July 2017, Washington,DC,USA

References

(1]

2

[10

[11

[12]

(13

[14]

[15]

[16

=
=

[18]

[19

[20]

[21

oo
ok

[23

[24]

[25

John R Anderson. 1983. A spreading activation theory of memory. Journal of
verbal learning and verbal behavior 22, 3 (1983), 261-295.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. 2023.
Self-rag: Learning to retrieve, generate, and critique through self-reflection. In
The Twelfth International Conference on Learning Representations.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan,
Wenbin Ge, Yu Han, Fei Huang, et al. 2023. Qwen technical report. arXiv preprint
arXiv:2309.16609 (2023).

Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural Language Processing
with Python: Analyzing Text with the Natural Language Toolkit. O’Reilly Media,
Inc. https://www.nltk.org/book/

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu.
2024. BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity
Text Embeddings Through Self-Knowledge Distillation. arXiv:2402.03216 [cs.CL]
Allan M Collins and Elizabeth F Loftus. 1975. A spreading-activation theory of
semantic processing. Psychological review 82, 6 (1975), 407.

DeepSeek-AlL 2025. DeepSeek-V3 Technical Report. arXiv:2412.19437 [cs.CL]
https://arxiv.org/abs/2412.19437

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva
Mody, Steven Truitt, Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan
Larson. 2024. From local to global: A graph rag approach to query-focused
summarization. arXiv preprint arXiv:2404.16130 (2024).

Wengqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin,
Tat-Seng Chua, and Qing Li. 2024. A survey on rag meeting llms: Towards
retrieval-augmented large language models. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 6491-6501.
Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin
Dai, Jiawei Sun, Haofen Wang, and Haofen Wang. 2023. Retrieval-augmented
generation for large language models: A survey. arXiv preprint arXiv:2312.10997
2,1 (2023).

Aashish Ghimire, James Pather, and John Edwards. 2024. Generative Al in
education: A study of Educators’ awareness, sentiments, and influencing factors.
In 2024 IEEE Frontiers in Education Conference (FIE). IEEE, 1-9.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek
Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex
Vaughan, et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783
(2024).

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. 2024. Lightrag:
Simple and fast retrieval-augmented generation. (2024).

Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su.
2024. Hipporag: Neurobiologically inspired long-term memory for large language
models. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. 2020.
Constructing a multi-hop qa dataset for comprehensive evaluation of reasoning
steps. arXiv preprint arXiv:2011.01060 (2020).

Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd.
2020. spaCy: Industrial-strength Natural Language Processing in Python. (2020).
doi:10.5281/zenodo.1212303

Yucheng Hu and Yuxing Lu. 2024. Rag and rau: A survey on retrieval-augmented
language model in natural language processing. arXiv preprint arXiv:2404.19543
(2024).

Yizheng Huang and Jimmy Huang. 2024. A survey on retrieval-augmented text
generation for large language models. arXiv preprint arXiv:2404.10981 (2024).
Yigian Huang, Shiqi Zhang, and Xiaokui Xiao. 2025. KET-RAG: A Cost-
Efficient Multi-Granular Indexing Framework for Graph-RAG. arXiv preprint
arXiv:2502.09304 (2025).

Lei Liu, Xiaoyan Yang, Junchi Lei, Xiaoyang Liu, Yue Shen, Zhiqiang Zhang, Peng
Wei, Jinjie Gu, Zhixuan Chu, Zhan Qin, et al. 2024. A survey on medical large
language models: Technology, application, trustworthiness, and future directions.
arXiv preprint arXiv:2406.03712 (2024).

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,
Fabio Petroni, and Percy Liang. 2023. Lost in the middle: How language models
use long contexts. arXiv preprint arXiv:2307.03172 (2023).

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and
Hannaneh Hajishirzi. 2022. When not to trust language models: Investigat-
ing effectiveness of parametric and non-parametric memories. arXiv preprint
arXiv:2212.10511 (2022).

Leland McInnes, John Healy, and James Melville. 2018. Umap: Uniform man-
ifold approximation and projection for dimension reduction. arXiv preprint
arXiv:1802.03426 (2018).

Yugi Nie, Yaxuan Kong, Xiaowen Dong, John M Mulvey, H Vincent Poor, Qing-
song Wen, and Stefan Zohren. 2024. A survey of large language models
for financial applications: Progress, prospects and challenges. arXiv preprint
arXiv:2406.11903 (2024).

OpenAl [n.d.]. tiktoken. https://github.com/openai/tiktoken

[26]

[27

[28

[29

@
=

(31

[32

[33

[35

[36

(37]

(38]

@
20,

[40

[41

[42

[43

[44

[45]

[46

i~
=

[48

Yaodong Su et al.

James Jie Pan, Jianguo Wang, and Guoliang Li. 2024. Survey of vector database
management systems. The VLDB Journal 33, 5 (2024), 1591-1615.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computational Linguistics. 311-318.
Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo, Haizhou Shi, Chuntao Hong, Yan
Zhang, and Siliang Tang. 2024. Graph retrieval-augmented generation: A survey.
arXiv preprint arXiv:2408.08921 (2024).

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike
Lewis. 2022. Measuring and narrowing the compositionality gap in language
models. arXiv preprint arXiv:2210.03350 (2022).

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin
Leyton-Brown, and Yoav Shoham. 2023. In-context retrieval-augmented language
models. Transactions of the Association for Computational Linguistics 11 (2023),
1316-1331.

Sartaj Sahni. 1975. Approximate algorithms for the 0/1 knapsack problem. Journal
of the ACM (JACM) 22, 1 (1975), 115-124.

Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and
Christopher D Manning. 2024. Raptor: Recursive abstractive processing for
tree-organized retrieval. In The Twelfth International Conference on Learning
Representations.

Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. 2019. From Louvain to
Leiden: guaranteeing well-connected communities. Scientific reports 9, 1 (2019),
1-12.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal.
2022. Interleaving retrieval with chain-of-thought reasoning for knowledge-
intensive multi-step questions. arXiv preprint arXiv:2212.10509 (2022).

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal.
2022. MuSiQue: Multihop Questions via Single-hop Question Composition.
Transactions of the Association for Computational Linguistics 10 (2022), 539-554.
Shu Wang, Yixiang Fang, Yingli Zhou, Xilin Liu, and Yuchi Ma. 2025. ArchRAG:
Attributed Community-based Hierarchical Retrieval-Augmented Generation.
arXiv:2502.09891 [cs.IR] https://arxiv.org/abs/2502.09891

Shen Wang, Tianlong Xu, Hang Li, Chaoli Zhang, Joleen Liang, Jiliang Tang,
Philip S Yu, and Qingsong Wen. 2024. Large language models for education: A
survey and outlook. arXiv preprint arXiv:2403.18105 (2024).

Junde W, Jiayuan Zhu, Yunli Qi, Jingkun Chen, Min Xu, Filippo Menolascina,
and Vicente Grau. 2024. Medical graph rag: Towards safe medical large language
model via graph retrieval-augmented generation. arXiv preprint arXiv:2408.04187
(2024).

Shangyu Wu, Ying Xiong, Yufei Cui, Haolun Wu, Can Chen, Ye Yuan, Lianming
Huang, Xue Liu, Tei-Wei Kuo, Nan Guan, et al. 2024. Retrieval-augmented gener-
ation for natural language processing: A survey. arXiv preprint arXiv:2407.13193
(2024).

Zhishang Xiang, Chuanjie Wu, Qinggang Zhang, Shengyuan Chen, Zijin Hong,
Xiao Huang, and Jinsong Su. 2025. When to use Graphs in RAG: A Compre-
hensive Analysis for Graph Retrieval-Augmented Generation. arXiv preprint
arXiv:2506.05690 (2025).

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, et al. 2025. Qwen3 technical
report. arXiv preprint arXiv:2505.09388 (2025).

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan
Salakhutdinov, and Christopher D Manning. 2018. HotpotQA: A dataset for di-
verse, explainable multi-hop question answering. arXiv preprint arXiv:1809.09600
(2018).

Hao Yu, Aoran Gan, Kai Zhang, Shiwei Tong, Qi Liu, and Zhaofeng Liu. 2024.
Evaluation of retrieval-augmented generation: A survey. In CCF Conference on
Big Data. Springer, 102-120.

Fangyuan Zhang, Zhengjun Huang, Yingli Zhou, Qintian Guo, Zhixun Li, Wen-
sheng Luo, Di Jiang, Yixiang Fang, and Xiaofang Zhou. 2025. EraRAG: Effi-
cient and Incremental Retrieval Augmented Generation for Growing Corpora.
arXiv:2506.20963 [cs.IR] https://arxiv.org/abs/2506.20963

Nan Zhang, Prafulla Kumar Choubey, Alexander Fabbri, Gabriel Bernadett-
Shapiro, Rui Zhang, Prasenjit Mitra, Caiming Xiong, and Chien-Sheng Wu. 2024.
SiReRAG: Indexing Similar and Related Information for Multihop Reasoning.
arXiv preprint arXiv:2412.06206 (2024).

Qinggang Zhang, Shengyuan Chen, Yuanchen Bei, Zheng Yuan, Huachi Zhou,
Zijin Hong, Junnan Dong, Hao Chen, Yi Chang, and Xiao Huang. 2025. A Sur-
vey of Graph Retrieval-Augmented Generation for Customized Large Language
Models. arXiv preprint arXiv:2501.13958 (2025).

Yunan Zhang, Shige Liu, and Jianguo Wang. 2024. Are there fundamental limi-
tations in supporting vector data management in relational databases? A case
study of PostgreSQL. 2024 IEEE 40th International Conference on Data Engineering
(ICDE) (2024), 3640-3653.

Penghao Zhao, Hailin Zhang, Qinhan Yu, Zhengren Wang, Yunteng Geng,
Fangcheng Fu, Ling Yang, Wentao Zhang, Jie Jiang, and Bin Cui. 2024. Retrieval-
augmented generation for ai-generated content: A survey. arXiv preprint
arXiv:2402.19473 (2024).

https://www.nltk.org/book/
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://doi.org/10.5281/zenodo.1212303
https://github.com/openai/tiktoken
https://arxiv.org/abs/2502.09891
https://arxiv.org/abs/2502.09891
https://arxiv.org/abs/2506.20963
https://arxiv.org/abs/2506.20963

Clue-RAG: Towards Accurate and Cost-Efficient Graph-based RAG via Multi-Partite Graph and Query-Driven lterative Retrieval Conference’17, July 2017, Washington,DC,USA

[49] Yingli Zhou, Yaodong Su, Youran Sun, Shu Wang, Taotao Wang, Runyuan He, of Graph-based RAG in a Unified Framework. arXiv preprint arXiv:2503.04338
Yongwei Zhang, Sicong Liang, Xilin Liu, Yuchi Ma, et al. 2025. In-depth Analysis (2025).

Conference’17, July 2017, Washington,DC,USA

A Supplementary Details
A.1 Experimental Settings

For token cost comparison between offline indexing and online re-
trieval using LLaMA3.0-8B shown in Figure 5 and 6, we account for
both prompt and completion tokens. For methods requiring LLM-
based query preprocessing (e.g., keyword or entity extraction), these
additional token costs are included in our calculations. During the
LLM generation phase, we employ a strategy by duplicating the
input query to the end of the original prompt. This design explicitly
mitigates the "lost in the middle" effect [21] observed in approaches
like LightRAG, where placing the question before lengthy context
can cause the model to overlook the task objective [21, 30]. Fur-
thermore, inspired by the prompt designs of SIRERAG [45] and
KETRAG [19], which include phrases like "Answer this question
as short as possible" to prevent verbose or irrelevant outputs, we
uniformly add this instruction to the final prompt of each method.
This ensures concise responses, maintaining evaluation fairness
and highlighting our method’s effectiveness. For other hyperpa-
rameters of each method, we follow the original settings in their
available codes. For NLP pre-processing, we employ the following
tools: c1100k_base from tiktoken library [25] for word tokenization
and counting, NLTK’s sent_tokenize [4] for sentence segmentation,
and spaCy [16] for named entity recognition. For LLM inference,
we use LLaMA3.0-8B [12] and Qwen2.5-32B [3], with a maximum
token limit of 8,000. In top-K selection tasks, we set K = 5 to accom-
modate token constraints. The embedding model for vector search
is BGE-M3 [5], while re-ranking is performed using the lightweight
yet powerful BGE-Reranker-v2-M3 [5]. As for our proposed ap-
proach, Clue-RAG employs the following default configurations:
the number of most relevant results K is set to 3, search depth D to
3, beam size M per depth to 5, and returned candidate chunks N to
5, ensuring that all methods ultimately retrieve the same number of
query-relevant chunks (i.e., 5) for fair comparison. By default, we
set the value of a to 1 if it is not explicitly specified. Additionally,
BLEU score [27] serves as the core selection metric for relevance
scoring.

A.2 Dataset Details

Table 5 presents the key statistics for the three benchmark datasets
used in our study: MuSiQue, HotpotQA, and 2Wiki, including cor-
pora size, number of questions, and total token count. Table 6 re-
ports the node counts for the Clue-RAG-1.0 graph index, detailing
the quantities of text nodes, knowledge unit nodes, and entity nodes

Yaodong Su et al.

for each dataset. Figure 8 presents the performance under different
hyperparameter settings on HotpotQA and 2Wiki datasets.

Table 5: Details of three benchmark datasets.

Dataset MuSiQue HotpotQA 2Wiki
Questions 1,000 1,000 1,000
Passages 11,656 9,221 6,119
Tokens 1,281,422 1,239,838 640,205

Table 6: Statistics of Clue-RAG-1.0’s graph index in
LLaMA3.0-8B and Qwen2.5-32B.

Model Nodes MuSiQue HotpotQA 2Wiki
Texts 11,656 9,221 6,119
LLaMA) ’ ’
ogp Knowledge 108513 100789 52,149
’ Entities 222,940 209,869 123,116
Qwen Texts 11,656 9,221 6,119
25398 Knowledge 114,256 108,957 57,442
’ Entities 238,954 229,762 136,966
HotpotQA
65 A 68 65 - 66 ——
64 64% 60 &/ ? 64
63 : 60 — 55 — 62 —
3 5 7 9 3 5 7 9 1 2 3 4 00205075 1
2Wiki

62 62 62 61 A
57 56 56 @ 55
52 50 — 50 —— 49 L

3 305 7 91 2 3 4

5 7 0 0.250.50.75 1

(a) Top-K (b) M (c)D d) o

©

Figure 8: Performance analysis under different hyperparam-
eter settings on HotpotQA and 2Wiki datasets.

A.3 Prompt Templates

Figure 9 and 10 illustrate the LLM instruction prompts used for
extracting knowledge units and answer generations, respectively.

Clue-RAG: Towards Accurate and Cost-Efficient Graph-based RAG via Multi-Partite Graph and Query-Driven lterative Retrieval Conference’17, July 2017, Washington,DC,USA

Prompt for generating knowledge units

Prompt:
Decompose the content into clear knowledge units, ensuring they are interpretable independently of their original context:

(1) Sentence Simplification: Break compound sentences into simpler, individual sentences. Whenever possible, retain the original
phrasing from the input text.

(2) Entity and Description Separation: For named entities that are accompanied by descriptive information, separate the descriptive
details into a distinct knowledge unit. Ensure each knowledge unit represents a single, clear fact.

(3) Pronoun Resolution: Replace all pronouns (e.g., "it", "they", "this") with explicit references, using full taxonomic names or clear
identifiers. Always use "[entity]’s [property]" construction.

(4) Output Format: Present the resulting knowledge units as a list of strings, formatted in JSON.

EXAMPLE-1:
Input:
Jesufas Aranguren. His 13-year professional career was solely associated with Athletic Bilbao, with which he played in nearly 400
official games, winning two Copa del Rey trophies.
Output:
{
"knowledge units": [
"JesUs Aranguren had a 13-year professional career.",
"JeslUs Aranguren's professional career was solely associated with Athletic Bilbao.",
"Athletic Bilbao is a football club.",
"JesUs Aranguren played for Athletic Bilbao in nearly 400 official games.",
"JeslUs Aranguren won two Copa del Rey trophies with Athletic Bilbao.",

}
EXAMPLE-2:
Input:
Ophrys apifera. Ophrys apifera grows to a height of 15 - 50 centimetres (6 — 20 in). This hardy orchid develops small rosettes of
leaves in autumn. They continue to grow slowly during winter. Basal leaves are ovate or oblong - lanceolate, upper leaves and bracts
are ovate - lanceolate and sheathing. The plant blooms from mid-April to July producing a spike composed from one to twelve
flowers. The flowers have large sepals, with a central green rib and their colour varies from white to pink, while petals are short,
pubescent, yellow to greenish. The labellum is trilobed, with two pronounced humps on the hairy lateral lobes, the median lobe is
hairy and similar to the abdomen of a bee. It is quite variable in the pattern of coloration, but usually brownish - red with yellow
markings. The gynostegium is at right angles, with an elongated apex.
Output:
{
"knowledge units": [

"Ophrys apifera grows to a height of 15-50 centimetres (6-20 in)",

"Ophrys apifera is a hardy orchid",

"Ophrys apifera develops small rosettes of leaves in autumn",

"The leaves of Ophrys apifera continue to grow slowly during winter",

"The basal leaves of Ophrys apifera are ovate or oblong-lanceolate",

"The upper leaves and bracts of Ophrys apifera are ovate-lanceolate and sheathing",

"Ophrys apifera blooms from mid-April to July",

"Ophrys apifera produces a spike composed of one to twelve flowers",

"The flowers of Ophrys apifera have large sepals with a central green rib",

"The flowers of Ophrys apifera vary in colour from white to pink",

"The petals of Ophrys apifera are short, pubescent, and yellow to greenish",

"The labellum of Ophrys apifera is trilobed with two pronounced humps on the hairy lateral lobes",

"The median lobe of Ophrys apifera's labellum is hairy and resembles a bee's abdomen",

"The coloration pattern of Ophrys apifera is variable but usually brownish-red with yellow markings",
"The gynostegium of Ophrys apifera is at right angles with an elongated apex" ,

JUST OUTPUT THE RESULTS IN JSON FORMAT!
Input: {passage}
Output:

Figure 9: The prompt for generating knowledge units.

Conference’17, July 2017, Washington,DC,USA Yaodong Su et al.

Prompt for answer generation

Prompt:

Your goal is to give the best full answer to question the user input according to the given context below.
Given Context: {context}

Give the best full answer to question :{question}

Answer this question in as fewer number of words as possible.

Figure 10: The prompt for generating answer.

	Abstract
	1 Introduction
	2 Preliminary
	3 Our Proposed Approach: Clue-RAG
	3.1 Overview
	3.2 Offline index: Clue-Index
	3.3 Online retrieval algorithm: Q-Iter

	4 Experiments
	4.1 Experimental Setup
	4.2 Overall performance evaluation (Q1)
	4.3 Effectiveness of hybrid extraction (Q2)
	4.4 Ablation study (Q3)
	4.5 Parameter sensitivity (Q4)

	5 Related Works
	6 Conclusion
	References
	A Supplementary Details
	A.1 Experimental Settings
	A.2 Dataset Details
	A.3 Prompt Templates

